
Geometry Reference Sheet

Triangle Relationships

Distance Formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \text{distance between points}$$

$$(x_1, y_1) \text{ and } (x_2, y_2)$$

Equation of a Line

Standard Form: Ax + By = C **Slope-Intercept Form:** y = mx + bwhere m = slope and b = y-intercept **Point-Slope Form:** $y - y_1 = m(x - x_1)$

Slope of a Line

Let (x_1, y_1) and (x_2, y_2) be two points in the plane. slope = $\frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$ (where $x_2 \neq x_1$)

Circle Formula

 $(x - h)^2 + (y - k)^2 = r^2$ where circle has center (h, k) and radius r

Midpoint Formula

 $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $M = \text{point halfway between points } (x_1, y_1) \text{ and } (x_2, y_2)$

Quadratic Formula

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (where $ax^2 + bx + c = 0$ and $a \neq 0$)

Standard Form of a Quadratic Equation

 $ax^2 + bx + c = 0$ (where $a \neq 0$)

Shape		Formulas for Area (A) and Circumference (C)	
Triangle	1	$A = \frac{1}{2}bh = \frac{1}{2} \times base \times height$	
Trapezoid		$A = \frac{1}{2}(b_1 + b_2)h = \frac{1}{2} \times \text{sum of bases} \times \text{height}$	
Parallelogram		$A = bh = \text{base} \times \text{height}$	
Circle	\bigcirc	$A = \pi r^2 = \pi \times \text{square of radius}$ $C = 2\pi r = 2 \times \pi \times \text{radius}$	$\pi \approx 3.14$ or $\pi \approx \frac{22}{7}$
Figure		Formulas for Volume (V) and Surface Area (SA)	
Rectangular Solid		$V = l \times w \times h = \text{length} \times \text{width} \times \text{height}$ $SA = 2 \times l \times w + 2 \times w \times h + 2 \times h \times l$	
Rectangular Solid Cylinder (total) Sphere Cone Pyramid Prism		$V = \pi r^2 h = \pi \times \text{square of radius} \times \text{height}$ $SA = 2\pi r h + 2\pi r^2$ $SA = 2 \times \pi \times \text{radius} \times \text{height} + 2 \times \pi \times \text{square of radius}$	$\pi \approx 3.14$
Sphere	Θ	$V = \frac{4}{3}\pi r^3 = \frac{4}{3} \times \pi \times \text{cube of radius}$ $SA = 4\pi r^2 = 4 \times \pi \times \text{square of radius}$	or $\pi \approx \frac{22}{7}$
Cone	\triangle	$V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \times \pi \times \text{square of radius} \times \text{height}$	
Pyramid		$V = \frac{1}{3}Bh = \frac{1}{3} \times \text{area of base} \times \text{height}$	
Prism		V = Bh = area of base × height	